If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2-4=0
a = 4; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·4·(-4)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*4}=\frac{-8}{8} =-1 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*4}=\frac{8}{8} =1 $
| 3^2x=23 | | 28=7+7y | | (-2+m)-7m=-6m | | -5+2=11x+x | | 0.6x+0.7=0.4-0.08 | | 4^-3m=16 | | 10x-100=206-8x | | 2.4p-3.5=-3.25 | | 7-x/5=11 | | 12g-10g=2 | | 8-x/9=10 | | 9−x/9=10 | | 9−x9=10 | | 50=(1000/5y) | | 4–4x=40 | | 2a-5=4a-2 | | 3.4+3.5x=2.2 | | -1x^2+(x-3)^2=81 | | 162y+4=16 | | 3.4x-1.2=-0.2 | | 1+6x=0 | | -x^2+(x+3)^2=81 | | 4x-4.2=-5.8 | | 7m-(1+m)=4m | | 1,007-d=248 | | 6r-5=-6 | | 10x2=20- | | 5r-5=5 | | -1.86+3.6x=-3.86 | | c+7=2c−13 | | 2r-1.6=-3.8 | | 10p+1=0 |